

ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splatting

Suyoung Lee^{1*}, Jaeyoung Chung^{1*}, Jaeyoo Huh², Kyoung Mu Lee¹²

¹Dept. of ECE & ASRI, ²IPAI Seoul National University, Seoul, Korea

Overview

- We introduce ODGS, a 3D reconstruction framework for omnidirectional images based on 3D Gaussian splatting, achieving both 100 times faster rendering speed and higher reconstruction accuracy than NeRF-based methods
- We present a detailed **geometric interpretation** of the rasterization for omnidirectional images, along with **mathematical verification**, and propose a CUDA rasterizer based on the interpretation

Motivation

- There are increasing demands in 3D scene reconstruction by:
 - Development and popularization of VR/MR devices
 - Growth in many applications such as robotics or autonomous driving
- Perspective V.S. Omnidirectional images for surrounding scenes
 - Perspective images are popular **but** requires computations to stitch and compose multiple images
 - Omnidirectional images contain the entire scene in a single image, thereby reducing the additional computation cost of composing the images
- Omnidirectional images are gaining more popularity with the spread of 360-degree cameras.

Motivation

- There are significant development in representing 3D scenes:
 - Neural Radiance Field (NeRF): Implicit representation
 - 3D Gaussian splatting (3DGS): Explicit representation
- 3DGS is getting more attention for fast optimization and rendering
- However, applying typical 3DGS to omnidirectional images would fail due to the different optical characteristics between omnidirectional a nd perspective images for rasterization

- ODGS(OmniDirectional Gaussian Splatting)
 - Fast CUDA rasterizer designed for omnidirectional images along with geometric interpretation
 - **Gist**: project each Gaussian to the corresponding tangent plane of the sphere and combine all projected Gaussian in the omnidirectional image plane.
- 4 processes in ODGS rasterizer
 - Coordinate transformation
 - Perspective projection
 - Equirectangular transformation
 - Pixel space transformation

- 1. Coordinate transformation (T_{μ})
 - We consider a perspective camera with unit focal length (called "unit camera")
 - \rightarrow The image plane would be placed on the surface of the unit sphere
 - We transform the coordinate from the camera to make the z axis heads toward the center of the Gaussian

$$\mathbf{T}_{\boldsymbol{\mu}} = \mathbf{T}_{\boldsymbol{\theta}_{\boldsymbol{\mu}}} \times \mathbf{T}_{\boldsymbol{\phi}_{\boldsymbol{\mu}}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{\boldsymbol{\mu}} & \sin \theta_{\boldsymbol{\mu}} \\ 0 & -\sin \theta_{\boldsymbol{\mu}} & \cos \theta_{\boldsymbol{\mu}} \end{bmatrix} \times \begin{bmatrix} \cos \phi_{\boldsymbol{\mu}} & 0 & -\sin \phi_{\boldsymbol{\mu}} \\ \sin \phi_{\boldsymbol{\mu}} & 0 & \cos \phi_{\boldsymbol{\mu}} \end{bmatrix} \\ = \begin{bmatrix} \cos \phi_{\boldsymbol{\mu}} & 0 & -\sin \phi_{\boldsymbol{\mu}} \\ \sin \theta_{\boldsymbol{\mu}} \sin \phi_{\boldsymbol{\mu}} & -\sin \theta_{\boldsymbol{\mu}} & \cos \theta_{\boldsymbol{\mu}} \cos \phi_{\boldsymbol{\mu}} \end{bmatrix}.$$

- 2. Perspective projection on the unit camera (J_o)
 - Each Gaussian is projected to its corresponding tangent plane
 - This projection assumes a local affine approximation, similar to 3DGS
 - Since the focal length of the image is 1, the Jacobian matrix is computed as:

$$\mathbf{J}_o = \begin{bmatrix} 1/||\boldsymbol{\mu}|| & 0 & 0\\ 0 & 1/||\boldsymbol{\mu}|| & 0 \end{bmatrix}$$

- 3. Transform to equirectangular space (Q_o)
 - By equirectangular transformation from the spherical surface to the cylindrical map, the horizontal size of Gaussian is stretched $\sec(\theta)$ times
- 4. Transform to pixel space (S_o)
 - Finally, we rescale the covariance to the pixel space

$$\mathbf{Q}_o = \begin{bmatrix} \sec \theta_\mu & 0\\ 0 & 1 \end{bmatrix}, \quad \mathbf{S}_o = \begin{bmatrix} W/2\pi & 0\\ 0 & H/\pi \end{bmatrix}$$

• The final Jacobian matrix for ODGS:

$$\mathbf{J}_{omni} = \mathbf{S}_o \mathbf{Q}_o \mathbf{J}_o \mathbf{T}_{\boldsymbol{\mu}} = \begin{bmatrix} \frac{W}{2\pi ||\boldsymbol{\mu}||} \sec \theta_{\boldsymbol{\mu}} \cos \phi_{\boldsymbol{\mu}} & 0 & -\frac{W}{2\pi ||\boldsymbol{\mu}||} \sec \theta_{\boldsymbol{\mu}} \sin \phi_{\boldsymbol{\mu}} \\ \frac{H}{\pi ||\boldsymbol{\mu}||} \sin \theta_{\boldsymbol{\mu}} \sin \phi_{\boldsymbol{\mu}} & \frac{H}{\pi ||\boldsymbol{\mu}||} \cos \theta_{\boldsymbol{\mu}} & \frac{H}{\pi ||\boldsymbol{\mu}||} \sin \theta_{\boldsymbol{\mu}} \cos \phi_{\boldsymbol{\mu}} \end{bmatrix}$$

Proof of ODGS

• The mathematical verification of ODGS can be found in the appendix

$$\frac{\partial \pi_o \left(\boldsymbol{\mu} \right)}{\partial \boldsymbol{\mu}} = \begin{bmatrix} \frac{W}{2\pi} \frac{\boldsymbol{\mu}_z}{\boldsymbol{\mu}_x^2 + \boldsymbol{\mu}_z^2} & 0 & -\frac{W}{2\pi} \frac{\boldsymbol{\mu}_x}{\boldsymbol{\mu}_x^2 + \boldsymbol{\mu}_z^2} \\ -\frac{H}{\pi ||\boldsymbol{\mu}||^2} \frac{\boldsymbol{\mu}_x \boldsymbol{\mu}_y}{\sqrt{\boldsymbol{\mu}_x^2 + \boldsymbol{\mu}_z^2}} & \frac{H}{\pi ||\boldsymbol{\mu}||^2} \sqrt{\boldsymbol{\mu}_x^2 + \boldsymbol{\mu}_z^2} & -\frac{H}{\pi ||\boldsymbol{\mu}||^2} \frac{\boldsymbol{\mu}_y \boldsymbol{\mu}_z}{\sqrt{\boldsymbol{\mu}_x^2 + \boldsymbol{\mu}_z^2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{W}{2\pi ||\boldsymbol{\mu}||} \frac{||\boldsymbol{\mu}||}{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}} \frac{\boldsymbol{\mu}_{z}}{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}} & 0 & -\frac{W}{2\pi ||\boldsymbol{\mu}||} \frac{||\boldsymbol{\mu}||}{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}} \frac{\boldsymbol{\mu}_{x}}{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}} \\ \frac{H}{\pi ||\boldsymbol{\mu}||} \frac{-\boldsymbol{\mu}_{y}}{||\boldsymbol{\mu}||} \frac{\boldsymbol{\mu}_{x}}{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}} & \frac{H}{\pi ||\boldsymbol{\mu}||} \frac{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}}{||\boldsymbol{\mu}||} & \frac{H}{\pi ||\boldsymbol{\mu}||} \frac{-\boldsymbol{\mu}_{y}}{\sqrt{\boldsymbol{\mu}_{x}^{2} + \boldsymbol{\mu}_{z}^{2}}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{W}{2\pi ||\boldsymbol{\mu}||} \sec \theta_{\mu} \cos \phi_{\mu} & 0 & -\frac{W}{2\pi ||\boldsymbol{\mu}||} \sec \theta_{\mu} \sin \phi_{\mu} \\ \frac{H}{\pi ||\boldsymbol{\mu}||} \sin \theta_{\mu} \sin \phi_{\mu} & \frac{H}{\pi ||\boldsymbol{\mu}||} \cos \theta_{\mu} & \frac{H}{\pi ||\boldsymbol{\mu}||} \sin \theta_{\mu} \cos \phi_{\mu} \end{bmatrix}$$

 $= \mathbf{J}_{omni}$

Experiment

- Results on Egocentric videos
 - ODGS produces prominent results with only 10 minutes of optimization
 - ODGS shows 100 times faster rendering speed than EgoNeRF

Experiment

- Results on Roaming videos
 - ODGS produces prominent results with only 10 minutes of optimization.
 - Methods designed only for egocentric motion cannot reconstruct large scenes created by roaming.

Dataset	Methods	PSNR↑	10 min SSIM↑	LPIPS↓	PSNR↑	$100 \min SSIM_{\uparrow}$	LPIPS↓	$\begin{vmatrix} \text{Time}_{\downarrow} \\ (\text{sec.}) \end{vmatrix}$
360Roam	NeRF(P)	15.07	0.6848	0.4839	15.26	0.6813	0.5025	62.98
	3DGS(P)	20.17	0.7001	0.3536	19.34	0.6576	0.3837	0.104
	TensoRF	18.00	0.5988	0.7488	18.12	0.5895	0.7133	9.052
	EgoNeRF	20.45	0.6358	0.5334	21.18	0.6718	0.4444	24.03
	ODGS	21.08	0.7066	0.3003	20.85	0.7111	0.2254	0.029
OmniScenes	NeRF(P)	15.69	0.7218	0.4546	15.98	0.6890	0.4914	62.90
	3DGS(P)	23.61	0.8444	0.2835	17.14	0.7119	0.3906	0.194
	TensoRF	23.58	0.8118	0.3534	24.21	0.8208	0.3091	8.100
	EgoNeRF	22.78	0.7997	0.3463	24.76	0.8313	0.2623	23.66
	ODGS	24.42	0.8526	0.1391	24.51	0.8505	0.1282	0.032
360VO	NeRF(P)	15.71	0.6186	0.4949	17.78	0.6373	0.5064	61.97
	3DGS(P)	22.87	0.7861	0.2970	22.73	0.7822	0.3061	0.091
	TensoRF	19.74	0.6543	0.5876	20.31	0.6721	0.5640	7.815
	EgoNeRF	22.47	0.7325	0.4342	23.78	0.7677	0.3680	23.96
	ODGS	24.63	0.8245	0.2175	26.68	0.8694	0.1264	0.026

Experiment

- Changes of performance according to optimization time
 - ODGS shows both faster convergence time and high performance

Conclusion

- We introduce ODGS, a 3D reconstruction framework for omnidirectional images based on 3D Gaussian splatting, achieving both 100 times faster rendering speed and higher reconstruction accuracy than NeRF-based methods
- We present a detailed **geometric interpretation** of the rasterization for omnidirectional images, along with **mathematical verification**, and propose a CUDA rasterizer based on the interpretation
- Check our code at our Github repo!

Thank You

